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Abstract—A simple yet powerful scheme is employed to incor-
porate Bayliss–Turkel absorbing boundary conditions (ABC’s)
of any order into the finite-element simulation of open-region
radiation problems. Unlike previous attempts to apply higher
order ABC’s in finite elements, the new implementation isexact.
The exact implementation is made possible by incorporating nor-
mal derivatives in the ABC formulation through direct algebraic
substitution. This scheme is found to offer enhanced accuracy
while negligibly affecting the sparsity of the system matrix.

Index Terms— Absorbing boundary conditions, differential
equations techniques, finite elements, numerical methods, wave
propagation.

I. INTRODUCTION

T HE ABSORBING boundary conditions (ABC’s) intro-
duced in the late 1970’s by Bayliss and Turkel were

perhaps the first operators to provide a mechanism by which
a finite-element mesh can be terminated without the necessity
to include excessively large number of elements in the region
surrounding the structure [1]. The Bayliss–Turkel (BT) opera-
tors became very popular because of their simplicity and good
accuracy in comparison to the more primitive Sommerfeld
radiation condition.

The BT operators promised increased accuracy as the order
increased. Despite this attractive feature, however, only first-
and second-order operators were actually implemented in
finite-element simulation. The reason for this was primarily
due to the common understanding that the implementation of
analytic ABC’s (of the BT type, the Engquist–Majda type or
others) into the finite-element formulation required expressing
the operator in the following form:

(1)

where and are constants that depend on the wave
number and the location of the outer boundary [see [2] for
discussion of BT and higher order operators having the form
in (1)]. The form in (1) is characterized by the presence of
the radial derivative on one side and tangential derivatives on
the other.

Transforming and constraining any operator to the form in
(1) was thought essential because it lead to a straightforward
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implementation in the analytic equations of finite elements.
In the case of the two-dimensional (2-D) space, the normal
derivative of the field would appear under the line integral
of the outer boundary [2]. More explicitly, let us consider the
homogeneous Helmholz equation in 2-D free space. Assuming
scattering by a perfectly conducting object, Galerkin procedure
leads to

(2)

where is the solution space of the problem and and
are the conductor boundary and the cylindrical mesh-

termination (outer) boundary, respectively. The unknown field
is represented by and the testing function by.

Observation of (2) shows that an ABC having the form
in (1) can be easily substituted in the integral over. The
alternative to (1) would be to use a from (actual expression
or an approximation of the ABC) that would involve mixed
derivatives.

Unfortunately, only the first- and second-order BT operators
can be cast in the form given in (1). BT operators of third or
higher order contain radial derivatives of second or higher
orders, or might contain mixed derivatives. The implemen-
tation of these higher order operators would unfortunately
add additional complexity into the finite-element formulation
and necessitates the use of higher order finite elements which
would then reduce the sparsity of the system matrix.

Despite this, however, one can find in the literature several
ABC constructions based on the BT operators that extend
beyond the second order. These constructions, however, are
only approximations of higher order operators where mixed
derivatives are either assumed negligible or replaced by simple
approximations that give results with varying degrees of
accuracy. Unfortunately, such approximations, for the most
part, are unsubstantiated analytically and often result in unsat-
isfactory levels of accuracy.

In this work, we depart from the above constraints, namely
that of recasting the boundary operator into the classical format
in (1). Instead of interchanging normal derivatives with tangen-
tial derivatives, we maintain the original form of the operator
and express (discretize) higher order operators as telescopic
finite-difference expressions. The additional attractive features
of this implementation are 1) it does not require the use of
higher order finite elements and 2) it is remarkably simple to
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Fig. 1. Surface current for TE-polarization calculated using BT second-order
(BT2), BT fourth-order (BT4), and the series solution. Thex-axis represents
equally spaced points spanning one half of the cylinder’s surface.

implement, while affecting the overall sparsity of the finite
element matrix in a negligible way.

The discussion in this work will be focused on the scalar
2-D wave equation, as would be the case in TE- or TM-
polarization scattering. Extension to three-dimensional (3-D)
scalar and vector wave equations is differed to future papers.

II. FORMULATION

The th-order BT operator applied on a cylindrical outer
boundary is expressed as [1]

(3)

where is the radial variable and is the wave number. The
form in (3) can be transformed into a discrete operator using
the backward finite-difference approximation for the normal
derivative, vis.

(4)

where is the identity operator and is the space shift
operator. Substituting (4) into (3), we arrive at the finite-
difference representation of the boundary operator in (3)

(5)

where . In (5), denotes
a discrete operator. Notice that (5) is in effect a one-sided
(using nodes internal to the boundary) finite-difference trans-
formation of the operator in (3). Such transformation of the
derivative was used successfully in the implementation of
higher order Higdon boundary operators in the finite-difference
time-domain (FDTD) method [3].

Fig. 2. Radar cross section (RCS) for 1-� radius cylinder.

Fig. 3. Error in the RCS.

III. I MPLEMENTATION INTO FINITE-ELEMENTS SIMULATION

The implementation of (5) into a finite-element formulation
is carried out by direct substitution into the finite element
matrix. For brevity, we skip the finite element formulation and
start with the matrix equation. We split the unknown nodal
field vector into two vectors: and denoting the
boundary nodes and interior nodes, respectively. The boundary
nodes are those that lie on the terminal outer boundary. Thus,
as a representative matrix system, we have

(6)

The vectors and are related to the excitation and all
boundary conditions. Next, we express the boundary condition
(5) in the following matrix equation:

(7)

Here, the matrix represents the discrete boundary operator.
Finally, we substitute (7) in (6) to obtain the reduced system
matrix

(8)
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The system in (8) is well posed in the sense that the nodal
fields that lie directly interior to the outer boundary nodes are
governed by the wave equation and are constrained by (5).

IV. NUMERICAL EXPERIMENT

To test the effectiveness of this new and highly simple
scheme, we consider a classical problem where the analytical
solution is available for comparison. We consider a perfectly
conducting circular cylinder of 1- radius. We then apply the
second- and fourth-order BT operators at a distance of 1/10
from the cylinder’s surface. The grid for this problem consists
of 180 uniformly spaced nodes in the angular direction and 6
uniformly spaced nodes in the radial direction.

Fig. 1 shows the surface current for TE-polarization inci-
dence ( is measured 180from the direction of incidence).
Figs. 2 and 3 show radar cross-section (RCS) calculations.
These graphs demonstrate that the fourth-order BT operator
gives a significant enhancement in accuracy. In fact, Fig. 3
shows that the absolute maximum error in RCS can be reduced
below 0.5 dB, even within the null zone, which is a significant
reduction from the solution incorporating the second-order BT
operator.

V. SUMMARY

This letter presented a method by which the BT operators
of any ordercan be implemented in a finite-element scheme.
The implementation does not involve any simplification of the
operator and is thereforeexact.The numerical implementation
of this scheme is simple and it only requires simple algebraic
manipulations. The resultant matrix equation’s sparsity is
reduced in a negligible manner. Any incremental increase in
computational cost due to the change in sparsity is reduced,
however, by solving a smaller matrix.
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