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Exact Implementation of Higher Order
Bayliss—Turkel Absorbing Boundary
Operators in Finite-Element Simulation

Omar M. RamahiMember, IEEE

Abstract—A simple yet powerful scheme is employed to incor- implementation in the analytic equations of finite elements.
porate Bayliss—Turkel absorbing boundary conditions (ABC's) |n the case of the two-dimensional (2-D) space, the normal
of any order into the finite-element simulation of open-region derivative of the field would appear under the line integral

radiation problems. Unlike previous attempts to apply higher . .
order ABC’s in finite elements, the new implementation isexact. of the outer boundary [2]. More explicitly, let us consider the

The exact implementation is made possible by incorporating nor- homogeneous Helmholz equation in 2-D free space. Assuming
mal derivatives in the ABC formulation through direct algebraic ~ scattering by a perfectly conducting object, Galerkin procedure
substitution. This scheme is found to offer enhanced accuracy |eads to

while negligibly affecting the sparsity of the system matrix.

Index Terms— Absorbing boundary conditions, differential V- Vi — k2ow dQ — v % dr + v @ dl' (2
equations techniques, finite elements, numerical methods, wave |, r. on r. On

propagation.
where €} is the solution space of the problem abd and
|. INTRODUCTION I', are the conductor boundary and the cylindrical mesh-
HE ABSORBING boundary conditions (ABC'’s) intro- _termlnatlon (outer) boundary, r(_aspectwe_ly. The unknown field
is represented by and the testing function by.

perhgggetﬂelrllirtsr:eorlJ?etthirgg?osp?gvigzyelalsr?le?:ugn-iljsurakilyv\\/lvehriihObservation of .(2) shows thaf[ an A.BC having the form
1) can be easily substituted in the integral o¥gr The

a finite-element mesh can be terminated without the necessnl} ) .
ernative to (1) would be to use a from (actual expression

to include excessively large number of elements in the regign T . .
surrounding the structure [1]. The Bayliss—Turkel (BT) operéd)—rgr?\?at"’i‘fgsrox'mat'on of the ABC) that would involve mixed

r me ver lar f their simplicity an i
tors beca ne very popuia because of t eir simp city and goo Unfortunately, only the first- and second-order BT operators
accuracy in comparison to the more primitive Sommerfeld

- . can be cast in the form given in (1). BT operators of third or
radiation condition. igher order contain radial derivatives of second or higher

The BT operators promised increased accuracy as the orlar ers. or might contain mixed derivatives. The im Ierr?en-
increased. Despite this attractive feature, however, only fir%. ' 9 ' P

and second-order operators were actually implemented | lon Of. _these higher _orc_ier opera_lt(_)rs would unfortuna_tely
add additional complexity into the finite-element formulation

finite-element simulation. The r n for this w rimaril . . . .
te-element simulatio e reason for this was prima X d necessitates the use of higher order finite elements which

due to the common understanding that the implementation 0 . .
9 P would then reduce the sparsity of the system matrix.

analytic ABC's (of the BT type, the Engquist-Majda type or Despite this, however, one can find in the literature several

others) into the finite-element formulation required expressi%lBC constructions based on the BT operators that extend
the operator in the following form: beyond the second order. These constructions, however, are

only approximations of higher order operators where mixed
derivatives are either assumed negligible or replaced by simple

where «, 3, andy are constants that depend on the wav@pproximations that give results with varying degrees of
number and the location of the outer boundary [see [2] féccuracy. Unfortunately, such approximations, for the most
discussion of BT and higher order operators having the forp@rt, are unsubstantiated analytically and often result in unsat-
in (1)]. The form in (1) is characterized by the presence dsfactory levels of accuracy.
the radial derivative on one side and tangential derivatives onln this work, we depart from the above constraints, namely
the other. that of recasting the boundary operator into the classical format
Transforming and constraining any operator to the form if (1) Instead of interchanging normal derivatives with tangen-
(1) was thought essential because it lead to a straightforwdi@l derivatives, we maintain the original form of the operator
and express (discretize) higher order operators as telescopic
Manuscript received June 16, 1998. _ finite-difference expressions. The additional attractive features
The author is with Compaq Computer Corporation, Maynard, MA 01754 . . . .
USA (e-mail: Omar.Ramahi@digital.com). of this implementation are 1) it does not require the use of
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Uy = QU+ PlUgy + Vlhpds - (1)
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Fig. 2. Radar cross section (RCS) forzIradius cylinder.
Fig. 1. Surface current for TE-polarization calculated using BT second-order
(BT2), BT fourth-order (BT4), and the series solution. Thexis represents
equally spaced points spanning one half of the cylinder's surface. 8 f

implement, while affecting the overall sparsity of the finite
element matrix in a negligible way.

The discussion in this work will be focused on the scalar
2-D wave equation, as would be the case in TE- or TM3
polarization scattering. Extension to three-dimensional (3-09 4}
scalar and vector wave equations is differed to future papef'é. \ I

Er

Il. FORMULATION

The Nth-order BT operator applied on a cylindrical outer ' f
boundary is expressed as [1]

4} 30 60 90 120 150 180
N . deg)
9 2-3/2 ¢ (deg
Blu} = 1:[1 <8_p T P) +Jk> =0 3 Fig. 3. Error in the RCS.
wherep is the radial variable and is the wave number. The |[|I. | MPLEMENTATION INTO FINITE-ELEMENTS SIMULATION

form in (3) can be transformed into a discrete operator using
the backward finite-difference approximation for the normzi)é
derivative, vis.

The implementation of (5) into a finite-element formulation
carried out by direct substitution into the finite element
matrix. For brevity, we skip the finite element formulation and
(I— 51 start with the matrix equation. We split the unknown nodal
0, — R, (4) field vector U into two vectors:U, and U;, denoting the
P boundary nodes and interior nodes, respectively. The boundary

h is the ident 61 is th hif nodes are those that lie on the terminal outer boundary. Thus,
where I is the identity operator and™" is the space shift o5 5 yepresentative matrix system, we have
operator. Substituting (4) into (3), we arrive at the finite-

difference representation of the boundary operator in (3) My, My | |Us| _ |Fy (6)
My, My |[|Ui | |Fi |
N _1
Bu} = H <ai_[ _ S_> =0 (5) The vectorsF; andF,, are related to the excitation and all
i1 A boundary conditions. Next, we express the boundary condition

(5) in the following matrix equation:
wherea; = 1/Ap + jk + (2i — 3/2)/p. In (5), B¢ denotes
a discrete operator. Notice that (5) is in effect a one-sided
(using nodes internal to the boundary) finite-difference tranfre, the matrixB represents the discrete boundary operator.

formation of the operator in (3). Such transformation of theinaly, we substitute (7) in (6) to obtain the reduced system
derivative was used successfully in the implementation gfirix

higher order Higdon boundary operators in the finite-difference
time-domain (FDTD) method [3]. (M;;B +M,,)U; =F;. (8)

U, = BU,. ©)
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The system in (8) is well posed in the sense that the nodal V. SUMMARY

fields that lie directly interior to the outer boundary nodes are this |etter presented a method by which the BT operators
governed by the wave equation and are constrained by (5)of any ordercan be implemented in a finite-element scheme.

The implementation does not involve any simplification of the
IV. NUMERICAL EXPERIMENT operator and is therefoexact. The numerical implementation

To test the effectiveness of this new and highly simplef this scheme is simple and it only requires simple algebraic
scheme, we consider a classical problem where the analyti@nipulations. The resultant matrix equation’s sparsity is
solution is available for comparison. We consider a perfectfgduced in a negligible manner. Any incremental increase in
conducting circular cylinder of 2-radius. We then apply the computational cost due to the change in sparsity is reduced,
second- and fourth-order BT operators at a distance of\l/1powever, by solving a smaller matrix.
from the cylinder’s surface. The grid for this problem consists
of 180 uniformly spaced nodes in the angular direction and 6
uniformly spaced nodes in the radial direction.
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